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Abstract
1. Invasive forest insects can induce tree mortality in two ways: (a) by directly harm-

ing trees; or (b) by influencing forest owners to pre-emptively harvest threatened 
trees. This study investigates forest owners’ intentions to harvest trees threat-
ened by invasive insects.

2. Our first objective is to identify and characterize agent functional types (AFTs) of 
family forest owners in the northeastern United States using a set of contingent 
behaviour questions contained in a mail survey. We establish AFTs as a form of 
dimension reduction, effectively casting landowners into a typology in which each 
type (AFT) has distinct probabilities of tree harvesting in response to forest in-
sects. Our analysis identifies three functional types of landowners: ‘Cutters’ (46% 
of respondents; high intent to harvest trees impacted by invasive forest insects), 
‘Responsive Cutters’ (42% of respondents; intent sensitive to insect impact sever-
ity), and ‘Non-cutters’ (12% of respondents; low intent to cut).

3. Our second objective is to model AFT membership to predict the distribution of 
AFTs across the landscape. Predictors are chosen from a set of survey, geographic 
and demographic features. Our best AFT-prediction model has three predictor 
variables: parcel size (hectares of forest), geographical region, and town-level for-
ested fraction. Application of the model provides a high-resolution probability dis-
tribution of AFTs across the landscape.

4. By coupling human and insect behaviour, our results allow for holistic assessments 
of how invasive forest insects disturb forests, inclusive of the management re-
sponse to these pests.

K E Y W O R D S

agent functional types, conjoint analysis, coupled natural-human system, family forest 
owners, forest insect pests, forest management, survey
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1  | INTRODUC TION

Invasive forest insects and pathogens are a prominent cause of 
forest disturbance in North America (Thorn et al., 2018). The U.S. 
Forest Service's National Insect and Disease Forest Risk Assessment 
(Krist et al., 2013) suggests that 334 million ha, or 63% of the na-
tion's forestland, are at risk for host species mortality, and 24.8 
million ha are predicted to experience more than 20% loss of host 
biomass by 2027. In fact, invasive insect pests are the only forest 
disturbance agent that has proved capable of nearly eliminating en-
tire tree species, or in some cases entire genera, within a matter of 
decades (Lovett et al., 2016).

While the direct effects of invasive insects on tree mortality are 
relatively well understood, the indirect impacts via ‘pre-emptive’ or 
‘salvage’ tree harvesting are not as well studied (Foster & Orwig, 
2006). Harvesting is currently a larger cause of mature tree mortal-
ity in northeastern forests than all other causes combined (Canham, 
2013); the frequency and intensity of harvests varies widely de-
pending on both biophysical and social factors (Thompson, Canham, 
Morreale, Kittredge, & Butler, 2017). Past invasive pest outbreaks 
in northeastern forests have been accompanied by accelerated har-
vesting, and there are distinct ecological legacies of the interactions 
between these two types of biotic disturbance (Thorn et al., 2018). 
For example, following reports that hemlock woolly adelgid (Adelges 
tsugae) had reached Connecticut in the 1980s and 1990s, many 
landowners harvested hemlock trees, despite their low commercial 
value (Orwig, Foster, & Mausel, 2002). Since the disturbance from 
harvesting in response to forest insects can be more intense than 
that of the pest alone (Foster & Orwig, 2006), there is a need to 
better understand when and why landowners harvest in response 
to invasive insects.

Harmful insect pests present forest owners with the risk of di-
minished economic returns and/or woodland aesthetics (Li et al., 
2014). How a landowner responds to this risk can be expected to 
depend on his or her objectives in owning their forest (Nordlund 
& Westin, 2011), as well as socioeconomic and demographic fac-
tors. The anticipated severity of the insect outbreak, the location 
of the woodland, and pest awareness may also be factors that in-
fluence landowners’ responses (or lack thereof) to the disturbance 
(Boyd, Gilligan, & Godfray, 2013; Nielsen-Pincus, Ribe, & Johnson, 
2015). To better understand these influences, we surveyed family 
forest owners (FFOs) in New England (northeastern United States) 
(Markowski-Lindsay et al., 2019). New England is an ideal study sys-
tem because the region contains many private landowners and one 
of the highest diversities of invasive insect pests in North America 
(Liebhold et al., 2013). In New England, an estimated 41% of all for-
estland is controlled by FFOs (B. J. Butler et al., 2016). Thus, the re-
sponse of FFOs to invasive forest insects may intensify, broaden, 
and potentially accelerate the ecosystem impacts associated with 
insects on the landscape.

Our survey contained contingent behaviour questions in a 
conjoint survey format to assess whether an FFO would harvest 
in response to different invasive insect scenarios. We used the 

responses to the contingent behaviour experiment to cluster indi-
viduals into agent functional types (AFTs). The idea is to group to-
gether similar ‘types’ of people based on common behaviour. This 
form of dimension-reduction leads to a functional typology which, 
while not describing the individual, represents archetypal patterns 
of behaviour that tend to repeat themselves within the community 
(Ficko et al., 2019). AFTs have proven to be useful for modelling 
human decision-making in a variety of applications, especially in the 
agricultural sector (Guillem, Barnes, Rounsevell, & Renwick, 2012; 
Karali, Brunner, Doherty, Hersperger, & Rounsevell, 2013) and in 
the context of large-scale socio-ecological systems (Arneth, Brown, 
& Rounsevell, 2014; Rounsevell, Robinson, & Murray-Rust, 2012). 
They have been less frequently used to represent private woodland 
owners (except e.g. Blanco, Brown, & Rounsevell, 2015). Further, the 
majority of landowner typologies have been based on objectives for 
ownership (Kelly, Gold, & Di Tommaso, 2017; Khanal et al., 2017; 
Nielsen-Pincus et al., 2015) or more nuanced criteria such as atti-
tudes towards climate change (Khanal et al., 2016), approaches to 
fire management (Charnley, Kelly, & Wendel, 2017), and thoughts 
on pollution (Perry-Hill & Prokopy, 2014). These are all proxies for 
behaviour rather than explicitly functional behaviours.

In this study, we form AFTs based on landowner responses to our 
survey's contingent behaviour questions. In this way, the contingent 
behaviours revealed by the survey responses generate a functional 
typology. We then develop a model to predict AFTs for FFOs who 
did not participate in the survey, giving us a means for scaling the 
survey data to the entire region and yielding probability distribu-
tions for the various AFTs across the landscape. Ultimately, this AFT 
framework allows us to estimate the probability that any FFO in the 
region will harvest their trees in response to a particular invasive 
insect scenario. Understanding such harvest probabilities across the 
region provides insight into the condition in which FFO response 
may alter the impacts of invasive forest insects on the forests in the 
region.

2  | DATA AND METHODOLOGY

2.1 | Overview

To understand and describe potential landowner response to inva-
sive forest insects, we take a three-step approach to analyse the 
contingent behaviour results revealed by the mail survey. First, we 
group respondents into AFTs based on observed patterns of con-
tingent behaviour. We also explore patterns of responses based 
on forest insect attributes. Second, we characterize the AFTs in 
numerous ways. We compare and contrast AFTs with respect to 
survey-reported age, education, income, and other individual- or 
household-level demographics. We also characterize AFTs with 
respect to reported management history and objectives for for-
est land ownership. We use socio-demographic data from the 
American Community Survey (ACS; Manson, Schroeder, Van, 
Riper, & Ruggles, 2017) to further identify differences across AFTs 
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based on publicly-available town-level information. Third, we de-
velop a multinomial logistic regression model that predicts AFT 
membership as a function of geographic features, allowing us to 
map AFT probabilities across the landscape, and thereby reveal 
likely spatial patterns of landowner responses to invasive forest 
insects. A table of all datasets and their uses in this study is pro-
vided in Supporting Information A.

2.2 | Landowner survey

As summarized in Markowski-Lindsay et al., 2019, we designed and 
administered the New England Woodland Owner Survey, which 
was mailed to a random sample of FFOs owning ≥ 4ha of land in the 
Connecticut River Watershed (Figure 1). Prior to administration, 
the survey content and human subjects protocol were reviewed 
and approved by the University of Massachusetts’ Institutional 
Review Board in accordance with the Human Research Protection 
Program. The survey materials stated that participation was 
completely voluntary, so by returning the questionnaire partici-
pants indicated their consent. The survey sample was stratified 
by six regions (New Hampshire north and south, Vermont north 
and south, Massachusetts, and Connecticut) and also stratified 
by parcel size (4–19 ha and ≥20 ha) to ensure sufficient repre-
sentation of larger parcels across the region. Landowner demo-
graphics, objectives for ownership, familiarity with invasive forest 
insects, and contingent behaviour questions were among the sub-
sections of the survey. In 2017, 2,000 mail surveys were sent to 

approximately 333 FFOs per region (roughly 167 per strata). The 
overall participation rate was 37%, or 688 usable surveys. We de-
tected no non-response biases based on telephone follow-up calls 
or early/late respondent comparisons. See Markowski-Lindsay et 
al., 2019 for a more in-depth discussion of the survey creation and 
landowner responses.

The heavily wooded Connecticut River Watershed (Figure 1) lies 
in the heart of New England, straddling Vermont and New Hampshire 
to the north and then stretching south through central Massachusetts 
and Connecticut. Some of the most damaging tree insect species in the 
Connecticut River Watershed include hemlock woolly adelgid (A.  tsu-
gae), emerald ash borer (Agrilus planipennis) and European gypsy moth 
(Lymantria dispar). The scenarios presented in the survey contingent 
behaviour questions referenced a generic invasive insect, but the range 
of characteristics was chosen based on insects mentioned above.

The contingent behaviour experiment in the survey was de-
signed to reveal FFO intended behaviour in response to different 
insect impact severity metrics. We presented respondents with 
a series of scenarios over the range of the following metrics: (a) 
percent of trees destroyed by the insect (‘mortality percent’); 
(b) timber value loss due to the insect (‘value loss’); (c) time from 
now until insect arrives (‘time to arrival’); and (d) time from insect 
arrival until tree death (‘time to mortality’). Survey respondents 
received one of six unique versions of the survey and were pre-
sented with five scenarios involving combinations of the four pest 
severity metrics (Table 1).

2.3 | Defining AFTs and exploring contingent 
behaviour responses

Survey respondents were grouped into AFTs based on natural cluster-
ing in the responses to the contingent behaviour questions (details in 
Section 3). We then fit a binary logistic regression to the responses of 
FFOs whose answers to the contingent behaviour questions were sen-
sitive to the stated levels of pest impact severity metrics. The result-
ing model allows us to evaluate the relative importance of each of the 
severity metrics in determining the likelihood of harvest.

We used a Bayesian model framework, in which X, Y, Z, and Q 
represent the four insect impact severity metrics, i is the scenario, j is 
the individual, and y is the response. Random effects were permitted 

F I G U R E  1   Study area. The Connecticut River Watershed (green) 
runs through New England (red) in the northeastern United States. 
The survey was stratified by the six regions shown [Colour figure 
can be viewed at wileyonlinelibrary.com]

TA B L E  1   Contingent behaviour questions

Scenario X

• A new woodland insect will arrive on your land in Z years 
(Z ∈ {0,5})

• The insect will kill X percent of your trees (X ∈ {10,50,90})
• Those trees will be killed within Q years (after the insect arrives) 

(Q ∈ {5,15})
• The insect will reduce the value of your timber by Y percent 

(Y ∈ {10,50,90})

Note: Responses to each of the five scenarios are binary: cut trees or do 
not cut trees.

www.wileyonlinelibrary.com
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for the intercept to account for differences across individuals. Priors 
on the model coefficients β were non-informative.

The model was implemented using JAGS via the R2jags pack-
age (Su & Yajima, 2012). The model converged after 500 itera-
tions and was run for a total of 1,000 iterations. We included 
survey sampling weights in the regression to generalize to the 
population; these weights are derived by Markowski-Lindsay et 
al., 2019.

2.4 | Characterizing AFTs

Survey items were used to characterize AFTs, and the ANOVA 
post hoc Tukey test was used to identify significant differences. 
Principal components analysis (PCA) was used to downscale two 
sets of data: (a) landowner objectives from the New England 
Woodland Owner Survey (Supporting Information B); and (b) so-
cio-demographic features from the ACS dataset. The ACS dataset 
was extracted using the 2011–2015 five-year estimates at the town 
level (Manson et al., 2017). Statistical analyses were conducted in 
R (R Core Team, 2017).

2.5 | Predicting AFTs across the landscape

We obtained land cover data from the National Land Cover Database 
(NLCD) 2011 (Homer et al., 2015). NLCD land cover classes were 
consolidated into the following four classes: ‘forest’ (deciduous for-
est + evergreen forest + mixed forest + shrub scrub + woody wet-
lands); ‘agriculture’ (crops + pasture/hay); ‘low density development’ 
(low intensity development + medium intensity development + open 
space); and ‘high density development’ (high intensity development). 
Each of the four land cover classes were converted to town-level 
percentages using city boundaries (U.S. Census Bureau, n.d.). In 
order to map our predicted probabilities across the landscape, we 
obtained parcel shapefiles from each individual state and town. 
Massachusetts was the only state in the region offering a complete 
parcel dataset. Connecticut, New Hampshire and Vermont had some 
missing town parcel data that were filled using towns with similar at-
tributes (size and developed area) from within the study area.

To predict the spatial distribution of AFTs across the landscape, 
we developed a multinomial logistic regression model from available 
spatial data. The full feature set included: survey strata; parcel-scale 
total area and forested fraction; town-scale land cover; and town-
scale socio-demographic features. Model selection proceeded in 
steps: First, we sought to uncover nonlinear spatial predictors of 

AFTs. To that end, we constructed a classification and regression tree 
(CART) (Breiman, 1984) with AFT as the response and all spatial parcel 
data (e.g. total area, survey strata) as predictors. Detected patterns 
were compiled into a new spatial categorical variable (see Supporting 
Information C for more information). We then constructed a multino-
mial logistic regression model, considering the full feature set, includ-
ing interaction terms with newly formed spatial categorical variable. 
We used a stepwise Akaike information criterion (AIC) procedure 
(forwards and backwards) to select the best model. The multinomial 
logistic regression model was then used to predict the probability 
of each of the AFTs for ~90,000 FFO land parcels throughout the 
Connecticut River Watershed. Modelling was conducted in an R envi-
ronment using the nnet and rpart packages (Ripley & Venables, 2011; 
Therneau, Atkinson, & Ripley, 2010).

3  | RESULTS

3.1 | Defining AFTs and exploring contingent 
behaviour responses

Responses to the contingent behaviour questions in the survey re-
vealed a natural clustering among respondents. Twelve percent of 
respondents answered ‘No’ (they did not intend to cut) to all invasive 
insect scenarios provided, while 46% of respondents selected ‘Yes’ 
(they intended to cut) for all provided scenarios. The remaining 42% of 
respondents revealed sensitivity in their contingent cutting behaviour 
to variation in the four pest impact severity measures. We could thus 
immediately identify two AFTs: ‘Cutters’ – those FFOs who stated 
their intention to harvest in response to invasive forest insects – and 
‘Non-cutters’ – those who stated their intention never to harvest in 
response to invasive forest insects. The remainder of respondents 
who we call ‘Responsive Cutters’, are evaluated for further sub-cate-
gorization based on the results of the logistic regression analysis.

Our logistic regression model for the 285 Responsive Cutters 
reveals that ‘mortality percent’ (percent of trees killed by an insect) 
and ‘time to mortality’ (time from insect arrival until tree death) are 
important predictors of harvest response (Figure 2). The 95% cred-
ible interval for the coefficient on ‘mortality percent’ is entirely 
positive, indicating that landowners are more likely to harvest 
trees as the severity of infestation increases. The 95% credible in-
terval for the coefficient on ‘time to mortality’ is entirely negative, 
indicating that FFOs are more inclined to harvest when the threat 
of tree death is more imminent. The mean coefficient estimates for 
‘value loss’ (timber value loss due to the insect) and ‘time to arrival’ 
(time from now until the insect arrives) are negative, although the 
95% credible intervals for these covariates include zero, thus we 
do not interpret these effects as being statistically significant.

We attempted to identify additional AFTs from among the group 
of Responsive Cutters by performing cluster analysis on the inter-
cepts estimated for each respondent. We also fit logistic regression 
models in which the coefficients on insect impact severity were al-
lowed to vary by individual and attempted to find natural groupings 

(1)�ij=�1j+�2×Xi+�3×Yi+�4×Zi+�5×Qi

(2)pij= invLogit
(

�ij
)

(3)yij∼Bernoulli
(

pij
)
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in these values. While we found that there was some potential varia-
tion among the Responsive Cutters in their baseline tendency to cut 
(i.e. intercept) and in their sensitivity to intensity measures (i.e. co-
efficients), clusters that might suggest the need for functional types 
were not apparent. We therefore proceeded with a total of three 
AFTs for further characterization.

3.2 | Characterizing AFTs

Cutters, the most numerous of the three identified AFTs, on average 
own more area of woodland (3.32 ± 0.065 log ha) compared to the 
Responsive Cutters (3.05 ± 0.060 log ha) or Non-cutters (2.69 ± 0.121 
log ha) (Table 2). We found that the age of respondents in the Non-
cutter AFT were greatest and in the Responsive Cutter AFT were low-
est, as measured by the age of the oldest and youngest of joint family 
owners. This was also reflected in ownership tenure (as of 2017), with 

the Non-cutters having the longest (27.4 ± 1.70 years) and Responsive 
Cutters having the shortest (21.9 ± 0.83 years) tenures.

Cutters and Responsive Cutters were overwhelmingly male, 
whereas Non-cutters were almost evenly split on gender (49% female 
compared to 51% male; different at a significance level of p < .001) 
(Table 3). Differences in educational achievement (p < .1) were great-
est between Cutters and Responsive Cutters; the Cutter group had 
larger percentages of high school or lower education, and smaller per-
centages of bachelor's degrees or advanced degrees, compared to the 
Responsive group. The educational achievement of the Non-cutter 
group fell in the middle of the Cutters and Responsive Cutters. Annual 
earnings had a similar pattern between the Cutter and Responsive 
groups; the Cutters had a greater proportion of low earners (<$25,000) 
and a smaller proportion of high earners (≥$200,000) compared to the 
Responsive Cutters (p < .05). Meanwhile, the Non-cutters had the 
smallest percentage of low earners (<$25,000) but the highest per-
centage of earners in the $25,000–$49,000 range.

Cutters, Responsive Cutters, and Non-cutters differed in man-
agement history, which built confidence in our functional typology 
(Figure 3). Cutters had higher frequencies of indicating that they had cut 
trees previously, sought advice from a forester, and had a management 
plan than the Responsive or Non-cutters. Furthermore, the Responsive 
group fell between the Cutters and Non-cutters in all three questions.

The diversity of stated landowner objectives for ownership was 
simplified using PCA (Table 4), wherein the first four principal com-
ponents captured approximately 70% of the variance. Component 
1 is strongly associated with beauty, nature, and wilderness, which 
we label as ‘scenery’. Component 2 is associated with firewood, tim-
ber products, forest products and hunting, which we call ‘utility’. 

F I G U R E  2   Parameter estimates for a binary logistic regression 
model fitted to data from the 285 ‘Responsive Cutters’. Thicker and 
thinner lines represent 68 and 95% credible intervals, respectively, 
with grey lines indicating 95% credible intervals that contain zero

Parameter Estimate
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TA B L E  2   Number and percentage of FFOs, log-transformed 
hectares of woodland, age, tenure, and number of owners by AFT

Item

Agent functional type

Cuttera Responsiveb Non-cutterc

Respondents (n) 317 285 83

% of respondents 46 42 12

 M SD M SD M SD

Log-transformed 
hectares of 
woodland

3.32b,c 1.15 3.05a,c 1.01 2.69a,b 1.09

Age of oldest owner 
(years)

66.7 13.2 65.1c 12.2 68.9b 10.3

Age of youngest 
owner (years)

59.8c 14.8 57.2c 15.8 64.8a,b 12.0

Tenure (years) 25.6b 16.7 21.9a,c 13.7 27.4b 15.1

Note: Superscript denotes statistical significance between (a) Cutters, 
(b) Responsive Cutters, and (c) Non-cutters in ANOVA post hoc Tukey 
significance test at the α = 0.05 level. All distributions are unimodal.
Abbreviations: AFT, agent functional type; FFOs, family forest owners.

TA B L E  3   Characteristics of AFTs across gender, education and 
household income

Attributes

Agent functional type (%)

χ2
p 
ValueCutter Responsive

Non-
cutter

Respondents (n) 317 285 83   

Gender    16.74 <.001

Male 0.72 0.74 0.51   

Female 0.28 0.25 0.49   

Education    13.25 .10

<High school 0.02 0.01 0.01   

High school 0.33 0.22 0.32   

Bachelor’s degree 0.26 0.29 0.27   

Advanced degree 0.29 0.35 0.33   

Household income    15.37 .05

<$25,000 0.10 0.05 0.03   

$25,000–$49,000 0.16 0.16 0.28   

$50,000–$99,000 0.34 0.33 0.25   

$100,000–$199,000 0.25 0.24 0.25   

≥$200,000 0.15 0.22 0.19   

Abbreviation: AFT, agent functional type.
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Components 1 and 2 reflect the cluster analysis of Majumdar, Teeter, 
and Butler (2008), whose first two clusters were (a) ‘multiple-objec-
tive’ and (b) ‘timber’. Components 3 and 4 are best represented by 
‘investment’ and ‘privacy’ respectively.

AFTs exhibit statistically significant differences across principal 
Components 1 (scenery), 2 (utility) and 4 (privacy) (p < .001) (Figure 4) 
by the post hoc pairwise comparison test. For both the scenery and 
utility scores, Cutters had the highest values, followed by Responsive 
Cutters, then Non-cutters. The privacy scores, on the other hand, 
were highest for the Non-cutters and lowest for the Cutters.

The many available town-level socio-demographic variables were 
also simplified using PCA. The first two principal components of the 
town-level socio-economic variables explain approximately 60% of the 
variance and can be identified as (a) ‘wealth’ and (b) ‘seniority’ dimen-
sions (Table 5). AFTs exhibit statistically significant differences across 

both (p < .001) (Figure 5) by the post hoc pairwise comparison test. 
Both Cutters and Responsive Cutters’ scores were lower than Non-
cutters on the wealth principal component, indicating that landown-
ers inclined to harvest trees live in towns that are poorer on average 
(higher fraction of town in poverty, lower median household income). 
In addition, Cutters and Responsive Cutters’ scores were higher than 
Non-cutters on the seniority principal component (higher median 
age, and higher social security and retirement income). It should be 
noted that FFOs are older on average than the general population (B. 
J. Butler et al., 2016), however the findings in Figure 5 provide an inter-
esting juxtaposition to those in Table 2; while Non-cutters are older on 
average than the other two groups, Non-cutters tend to live in towns 
that are on average younger than the other two groups.

3.3 | Predicting AFTs across the landscape

A CART model fitting AFT to the survey stratification factors 
(Supporting Information C) reveals a non-monotonic spatial trend in 
the distribution of AFTs. Small parcels (<20 ha) in all regions except 
those in New Hampshire exhibit a significantly different distribu-
tion of AFTs than large parcels (≥20 ha) or those located in regions in 
New Hampshire (Figure 6). Put differently, this implies that FFOs in 
New Hampshire, regardless of their parcel size, display similar pest-
induced harvesting tendencies to FFOs owning ≥20 ha in Vermont, 
Massachusetts, and Connecticut. To incorporate this pattern into our 
modelling scheme, we constructed a new two-level factor variable 
from the 12 original survey strata: (factor level A) parcels ≥20 ha plus 
all parcels in New Hampshire (north and south); (factor level B) parcels 
<20 ha in Vermont north and south, Massachusetts, and Connecticut.

We next fit a multinomial logistic regression model to predict 
AFT from our two-level spatial factor variable (Figure 6) as well 
as parcel- and town-scale geographic and demographic predic-
tors. Stepwise AIC model selection reveals that the best model 
includes the following three predictors: our spatial factor variable, 
town-level forested fraction, and parcel-level area of woodland 
(Figure 6). We also included an interaction term between the spa-
tial factor variable and the two continuous features (town-level 

F I G U R E  3   Proportion of each AFT with previous forest management experience. Error bars represent the standard errors of the 
estimated population mean. Abbreviation: AFT, agent functional type [Colour figure can be viewed at wileyonlinelibrary.com]
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TA B L E  4   PCA loadings of landowner objectives, as indicated in 
the New England Woodland Owner Survey

Landowner
objective

Rotated principal component scores

PC1: 
‘scenery’

PC2: 
‘utility’

PC3: 
‘investment’

PC4: 
‘privacy’

Beauty 0.43 −0.27 0.05 0.07

Nature 0.44 −0.29 −0.01 −0.37

Wilderness 0.45 −0.22 0.01 −0.39

Investment 0.03 0.19 0.88 −0.10

Privacy 0.29 −0.15 0.32 0.64

Heirs 0.21 0.18 −0.08 0.28

Firewood 0.24 0.42 −0.02 0.09

Timber 0.15 0.47 0.14 −0.38

Products 0.25 0.38 −0.19 −0.01

Hunting 0.19 0.39 −0.20 0.07

Recreation 0.35 0.01 −0.15 0.24

Note: Rotated component scores of the first four principal 
components > 0.30 are in bold.
Abbreviation: PCA, principal components analysis.
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forested fraction and area of woodland). The interaction term re-
vealed that town-level forested fraction is significant with respect 
to spatial factor level B (parcels < 20 ha), but not with factor level 
A (larger parcels + NH).

The model suggests that with increasing area of woodland 
owned, a respondent has an increasing probability of being a Cutter 
or Responsive Cutter, and lower probability of being a Non-cutter 
(Figure 7). As forest fraction increases in a town, we anticipate an 
increase in the probability of Cutters and a decrease in the probabil-
ity of Responsive Cutters and Non-cutters. The McFadden's pseudo 
R2 of this model is 0.29. Model coefficients and standard errors are 
reported in Supporting Information D.

Using the multinomial logistic regression (Figure 7), AFTs were 
predicted for all parcels in the Connecticut River Watershed, includ-
ing those not owned by survey respondents (Figure 8). The Cutter 
and Non-cutter probabilities exhibit distinct north–south trends, 
with notably more Cutters in the north, whereas the Responsive 
Cutters are relatively evenly distributed throughout the study re-
gion. The Responsive Cutter group also has the highest average 
probability. Predicted AFTs (Figure 8) compared favourably against 
historical forest change in the same parcels over the years 2000–
2018 (Hansen et al., 2013) as shown in Supporting Information E.

4  | DISCUSSION

As invasive forest insects continue to spread in New England and 
disturb the forested landscape, an important question emerges: how 
will human behaviour in response to invasive insects interact with 

F I G U R E  4   Violin plots showing the 
distribution of landowner objective 
principal component scores by AFT. 
One or more AFTs are significantly 
different from the others across principal 
Components 1 (scenery), 2 (utility) and 
4 (privacy). Abbreviation: AFT, agent 
functional type [Colour figure can be 
viewed at wileyonlinelibrary.com]
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TA B L E  5   PCA scores of town socio-demographics

ACS feature

Rotated component scores

PC1: ‘wealth’ PC2: ‘seniority’

Income from agriculture −0.22 0.19

Income from self-employment 0.08 0.28

Income from hourly wages 0.31 −0.40

Income from social security −0.22 0.45

Income from retirement 0.16 0.34

Income from supplemental 
sources

−0.38 −0.15

Income from public assistance −0.36 −0.10

Median household income 0.47 −0.07

Fraction of town in poverty −0.44 −0.05

GINI index of income inequality −0.12 0.14

Median age 0.06 0.47

Note: Rotated principal component scores > 0.30 are in bold.
Abbreviations: ACS, American Community Survey; PCA, principal 
components analysis.
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F I G U R E  5   Violin plots showing 
the distribution of socio-demographic 
principal component scores by AFT. 
‘Wealth’ (left) and ‘seniority’ (right) 
correspond to principal Components 
1 and 2, respectively, from the PCA 
of town-averaged socio-demographic 
features (Table 5). One or more AFTs are 
significantly different from the others 
across both ‘wealth’ and ‘seniority’ 
(p < .001). Abbreviation: AFT, agent 
functional type [Colour figure can be 
viewed at wileyonlinelibrary.com]
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F I G U R E  6   Our constructed two-level spatial factor variable. (a) Distribution of AFTs according to factor level. Parcels ≥ 20 ha and all 
parcels in New Hampshire (factor level A, blue) are predominantly Cutters, whereas the remaining strata are predominantly Responsive 
Cutters (factor level B, green). Error bars indicate the standard errors of the estimated population mean; (b) mapping of the two factor levels. 
Abbreviation: AFT, agent functional type [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  7   Summary of multinomial logistic regression results, with AFT probability expressed as a function of model predictors for each 
of the two spatial factor levels (Figure 6). In each panel, variables not indicated on the horizontal axis were held at their mean value. Shading 
indicates 95% predictive intervals. Abbreviation: AFT, agent functional type [Colour figure can be viewed at wileyonlinelibrary.com]
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the disturbance created by these pests? In our survey, over 80% of 
respondents indicated that they would consider harvesting in re-
sponse to at least one of the invasive tree insect scenarios presented 
to them, depending on the severity of the infestation. Just over half 
of the landowners reported having harvested their land before, indi-
cating that invasive forest insects may incite harvest on more parcels 
than would normally be harvested during routine forest management 
in the Connecticut River Watershed. Indeed, with our new knowledge 
regarding the behaviours of these different groups of landowners and 
our ability to predict AFTs and AFT behaviour across the landscape, 
we may now be able to more holistically look at how invasive forest 
insects disturb forests, inclusive of the management response to these 
pests. Coupling human and insect behaviour is essential for modelling 
the ecological and economic impacts of invasive insects, particularly 
in New England, where there are > 200,000 forest landowners and 
among the highest numbers of invasive tree pests in the U.S.

Clustering landowners based on behaviour is useful because 
the AFTs translate naturally to models of landscape change in 
which human decisions are simulated alongside ecological pro-
cesses (Arneth et al., 2014). While other studies have also clustered 
private landowners based on survey data (e.g. Khanal et al., 2017), 
our approach is novel for its use of empirical information collected 
through contingent behaviour questions. Our clusters are AFTs 
because they represent patterns of contingent behaviour. Because 
we clustered based on contingent behaviour alone (omitting ob-
jectives, management style, and demographics), our typology does 
not fall along clean lines of landowner objectives and motivations, 
suggesting that (a) tree cutting can be affected by a variety of mo-
tivations and (b) clustering on the basis of cutting behaviour alone 
does not capture the range of landowner intentions. However, we 
chose to prioritize contingent behaviour over descriptive char-
acteristics because, in our case, understanding the behavioural 

F I G U R E  8   Predicted AFT probability 
throughout the Connecticut River 
Watershed, calculated from a multinomial 
logistic regression model based on a 
constructed spatial factor variable, parcel-
level hectares of woodland, and town-
level forested fraction. Abbreviation: AFT, 
agent functional type [Colour figure can 
be viewed at wileyonlinelibrary.com]
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response of landowners to invasive forest insects is our end-goal. 
This AFT modelling framework can be directly applied to compute 
parcel-level probability of harvest under different insect scenarios.

4.1 | Cutters

In the survey, 73% of our Cutter AFT indicated that they had previ-
ously cut trees on their property, and 45% indicated that they had a 
management plan – the highest in both categories of any AFT– as we 
would expect. The Cutters own the largest FFO fraction of the wa-
tershed (59.9%), and also own more woodland on average, suggesting 
that larger parcels provide more opportunity for sustaining economi-
cally viable timber harvests. Furthermore, this group exhibits the 
highest score on the ‘utility’ principal component (firewood, timber, 
non-timber products, and hunting) as well as the ‘scenery’ principal 
component (beauty, nature, wilderness, and recreation), indicating 
that landowner motivations to cut may span multiple landowner ob-
jectives. Town-level ACS data suggest that while the Cutters are not 
the oldest individuals, they are more likely to live in towns with older 
average populations, and also in towns with lower median incomes. 
Furthermore, our multinomial logistic regression model predicts 
higher Cutter probability as the town forest cover increases. These 
trends could be due in part to the fact that areas containing older, 
lower wage-earners and more forested regions of New England 
are more likely to contain sawmills, which is a critical factor influ-
encing harvest. The Cutters themselves are also more likely to earn 
<$25,000 and less likely to earn >$200,000 compared to the other 
groups. Cutters have the greatest potential to affect the impact of 
invasive forest insects on the landscape, as 46% of the respondents 
were grouped into this AFT, are always predicted to cut in response 
to invasive tree pests, and generally own the largest parcels.

4.2 | Responsive cutters

The Responsive Cutter AFT was sensitive to variation in the pa-
rameters of the contingent behaviour questions. Responsive cut-
ter coefficient estimates on percent tree mortality and duration 
to tree mortality follow intuition: The greater the tree mortality 
percent (i.e. severity) resulting from the insect infestation, the 
more likely these FFOs are to cut their trees. Additionally, the 
greater the time to tree mortality (i.e. delay of damage), the less 
likely these FFOs are to remove timber. It is unclear whether the 
Responsive Cutter decisions are driven primarily by financial (i.e. 
pre-emptive or salvage logging) or other (i.e. safety, aesthetic) 
motivations. However, survey results indicate that Responsive 
Cutters are less likely to have cut previously, are less likely to 
have a management plan, and have a higher likelihood of own-
ing their land for privacy, compared to Cutters. Furthermore, 
Responsive Cutters exhibit higher likelihoods of earning larger 
incomes and obtaining advanced college degrees. Therefore, we 
hypothesize that Responsive Cutters have different motivations 

for cutting compared to Cutters, and this group's lower rank-
ing on the ‘utility’ principal component perhaps suggests that 
Responsive Cutters are less financially-driven relative to Cutters. 
Spatially, FFOs living outside of New Hampshire and owning par-
cels < 20 ha are more likely to be Responsive Cutters compared 
to Cutters or Non-cutters. We frame the typical Responsive 
Cutter as a relatively young landowner with little past manage-
ment experience who is willing to harvest infested trees, but un-
sure of the degree to which he or she will commit to doing so. 
Approximately 44% of the surveyed woodland is controlled by 
the Responsive Cutters, who make up 42% of the respondents. 
This group owns on average the second-largest parcels (after the 
Cutters), and will, on occasion, harvest in response to invasive 
forest insects, moderately affecting the impact of tree pests on 
the landscape.

4.3 | Non-cutters

Non-cutters are our smallest group, encompassing only 12% of 
the survey respondents. They own the smallest area of forest, 
have the longest land tenure, and are the oldest on average. 
Non-cutters are just as likely to be female as male, in stark con-
trast to the other two groups, which are predominantly male. 
This gender disparity reflects the global trend of lower rates 
of forest management among women, compared to male land-
owners (S. M. Butler, Huff, Snyder, Butler, & Tyrrell, 2017). The 
Non-cutters are the least experienced in forest management 
activities, and also score the lowest on the ‘utility’ objective 
principal component. Furthermore, the Non-cutters score the 
highest on the ‘privacy’ component, indicating that the land-
owners in this AFT value their land as a retreat rather than a 
source of revenue. While the Non-cutters are the oldest individ-
uals, they live in towns that are younger and wealthier on aver-
age, perhaps due to the fact they own smaller parcels, which can 
be found in less remote areas. This demographic group is more 
inclined to let nature take its course through passive amenity 
appreciation and the least likely to harvest in response to inva-
sive forest insects.

4.4 | Implications of accelerated tree mortality 
for nature

The coordinated actions of invasive tree insects, Cutters, Responsive 
Cutters, and Non-cutters are expected to reduce the biomass of host 
tree species in New England. Trees provide important ecosystem 
services, including protecting watersheds, maintaining biodiversity, 
and sequestering carbon (FAO, 2009), all of which are threatened 
by the current and impending spread of tree insect pests. Reducing 
ecosystem services will accelerate positive feedback loops that de-
grade watersheds, endanger threatened species, and contribute to 
climate change. In urban or peri-urban areas, ecosystem services 
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provided by trees also include shading and mitigating storm water 
runoff (USDA, n.d.). These risks to the natural landscape are exacer-
bated by the phenomenon of ‘by-catch’, which describes the removal 
of species that co-occur with the host in order to enhances the com-
mercial viability of the harvest, or to achieve another silvicultural 
objective (e.g. regeneration of a different species). By-catch furthers 
the ecological impacts of insect-induced tree mortality by reducing 
species richness, which serves as a foundation for maintaining eco-
system biodiversity.

4.5 | Limitations and future research

Cutters and Non-cutters by definition each exhibited uniformity 
in their responses to the contingent behaviour questions, although 
it is important to consider these results only within the range of 
values presented to them. It is entirely possible that a cutter would 
choose not to cut under less severe circumstances than those pre-
sented in the survey, and that a Non-cutter would respond differ-
ently under more dire conditions. Nevertheless, the range of values 
in the contingent behaviour questions are reflective of realistic 
conditions. Furthermore, the AFTs themselves were derived solely 
based on responses to the contingent behaviour questions; so, 
while we characterize AFTs using landowner age, objectives, etc., 
it is important to remember that such qualities are variable within 
the AFTs.

Still missing from this puzzle of how FFOs will influence 
the total disturbance initiated by invasive forest insects is the 
distribution and type of insect causing the response, specific 
types of harvests applied in response to the insects, and forest 
types affected by both the insects and harvests in response to 
(or in anticipation of) the disturbance. Our typology provides 
a basis for FFO response scenarios, although more research is 
needed to obtain finer insight into the attributes and impacts 
of insect-induced harvests. As alluded to in Section 4.4, it is 
important to account for ‘by-catch’ (harvesting of non-host spe-
cies along with host species) because this practice could sig-
nificantly increase the total disturbance initiated by insects. 
Another open question is how the forest product market would 
respond to a sudden influx of salvage-infected timber (and by-
catch). Furthermore, it is possible that state-imposed quaran-
tines could further suppress the ability of owners to profitably 
harvest their trees. Our AFT modelling scheme might also ben-
efit from the consideration of sawmill location data, since the 
proximity of a parcel to a mill would presumably impact a land-
owner’s willingness to cut.

Another important question is, how will the actions of FFOs 
feedback on the spread of invasive forest insects? Addressing this 
question requires a coupled natural-human systems-based per-
spective (Field, Dayer, & Elphick, 2017; Knight, Cowling, Difford, 
& Campbell, 2010) because, while pest infestations induce human 
impacts on the natural system, the natural system, in turn, then 
evolves from the human-impacted natural system (Meurisse, 

Rassati, Hurley, Brockerhoff, & Haack, 2018). Our typology lends 
itself naturally to coupled human-tree-insect modelling, which 
is the next stage of our team's research. Such models could be 
used to reveal optimal management strategies for particular pest 
species. Future modelling within this AFT framework will also 
depend on the evolution of AFTs over time. Changing landscape 
conditions (e.g. forest loss to development) and ownership char-
acteristics (e.g. shifts in parcel size) will add nuance to anticipated 
human–pest interactions. The goal is to support land management 
professionals in exploring alternative future scenarios with re-
spect to forest stocks and insect spread.
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